Critical role of synovial tissue-resident macrophage niche in joint homeostasis and suppression of chronic inflammation

Sci Adv. 2021 Jan 6;7(2):eabd0515. doi: 10.1126/sciadv.abd0515. Print 2021 Jan.

Abstract

Little is known about the mechanisms regulating the transition of circulating monocytes into pro- or anti-inflammatory macrophages in chronic inflammation. Here, we took advantage of our novel mouse model of rheumatoid arthritis, in which Flip is deleted under the control of a CD11c promoter (HUPO mice). During synovial tissue homeostasis, both monocyte-derived F4/80int and self-renewing F4/80hi tissue-resident, macrophage populations were identified. However, in HUPO mice, decreased synovial tissue-resident macrophages preceded chronic arthritis, opened a niche permitting the influx of activated monocytes, with impaired ability to differentiate into F4/80hi tissue-resident macrophages. In contrast, Flip-replete monocytes entered the vacated niche and differentiated into tissue-resident macrophages, which suppressed arthritis. Genes important in macrophage tissue residency were reduced in HUPO F4/80hi macrophages and in leukocyte-rich rheumatoid arthritis synovial tissue monocytes. Our observations demonstrate that the macrophage tissue-resident niche is necessary for suppression of chronic inflammation and may contribute to the pathogenesis of rheumatoid arthritis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Arthritis, Rheumatoid* / etiology
  • Arthritis, Rheumatoid* / pathology
  • Homeostasis
  • Inflammation / pathology
  • Macrophages / pathology
  • Mice
  • Synovial Membrane* / pathology