ERK Inhibitor LY3214996-Based Treatment Strategies for RAS-Driven Lung Cancer

Mol Cancer Ther. 2021 Apr;20(4):641-654. doi: 10.1158/1535-7163.MCT-20-0531. Epub 2021 Feb 3.

Abstract

RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K, and RB pathways. Within the MAPK pathway, ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing antitumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS-mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here, we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS-mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and-equally important-to identify biomarkers for patient stratification.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Genes, ras / drug effects*
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / pathology
  • Oncogenes / genetics*
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use*

Substances

  • Protein Kinase Inhibitors