Intrinsically disordered proteins (IDPs) are an important class of proteins that do not fold to a well-defined three-dimensional shape but rather adopt an ensemble of inter-converting conformations. This feature makes their experimental characterization challenging and invites a theoretical and computational approach to complement experimental studies. In this review, we highlight the recent progress in developing new computational and theoretical approaches to study the structure and dynamics of monomeric and order higher assemblies of IDPs, with a particular emphasis on their phase separation into protein-rich condensates.
Copyright © 2021. Published by Elsevier Ltd.