To study the relationship between the catecholamine (CA) nerve endings and the enkephalinergic cell bodies in the magnocellular dorsal nucleus (MDN) of guinea pig hypothalamus, double-labeling experiments were performed on the same tissue section at the electron microscopic level. An in vitro autoradiographic (ARG) method for [3H]-norepinephrine (NE) or [3H]-dopamine (DA) was combined with a post-embedding immunogold cytochemical technique for Met-enkephalin (Met-enk) in colchicine-treated animals. Hypothalamic slices (450 micrograms) were perfused with [3H]-NE or [3H]-DA at the fluid-gas interface, then fixed by immersion with glutaraldehyde and osmic acid. Semi-thin sections processed from the thickness of the slices showed adequate penetration of the tracers to all parts of the tissue. Frontal sections permitted visualization of some CA-uptake structures distributed around the cells. At the ultrastructural level, preservation appeared good on about 60% of the thickness of slices, and [3H]-CA structures were easily distinguished. Ultra-thin sections were successively incubated with Met-enk and colloidal gold-labeled antisera, followed by ARG processing. At the electron microscopic level, the good integrity of the tissue made possible visualization of [3H]-CA nerve terminals making synaptic contacts with enkephalinergic perikarya. These results provide morphological evidence for direct catecholaminergic control of enkephalinergic neurons of the MDN.