Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning

Cardiovasc Res. 2022 Jan 29;118(2):612-621. doi: 10.1093/cvr/cvab040.

Abstract

Aims: Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.

Methods and results: We adopted a workflow consisting of noise reduction and extraction of independent components within DVA signals. Predictor performance was assessed in survival random forest models. Applying our technique to the prediction of all-cause mortality in a cohort of 214 haemodialysis patients resulted in the selection of a component which was highly correlated to maximal venous dilation following flicker stimulation (vMax), a previously identified predictor, confirming the validity of our approach. When fitting for CV mortality as the outcome of interest, a combination of three components derived from the arterial signal resulted in a marked improvement in predictive performance. Clustering analysis suggested that these independent components identified groups of patients with substantially higher CV mortality.

Conclusion: Our results provide a machine learning workflow to improve the predictive performance of DVA and identify groups of haemodialysis patients at high risk of CV mortality. Our approach may also prove to be promising for DVA signal analysis in other CV disease states.

Trial registration: ClinicalTrials.gov NCT01152892.

Keywords: Haemodialysis; Machine learning; Microcirculation; Myocardial infarction and cardiac death; Retinal vessels.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Arterioles / physiopathology*
  • Cardiovascular Diseases / diagnosis
  • Cardiovascular Diseases / mortality
  • Cardiovascular Diseases / physiopathology*
  • Cause of Death
  • Cluster Analysis
  • Female
  • Heart Disease Risk Factors
  • Humans
  • Kidney Failure, Chronic / diagnosis
  • Kidney Failure, Chronic / mortality
  • Kidney Failure, Chronic / physiopathology*
  • Kidney Failure, Chronic / therapy
  • Light
  • Machine Learning*
  • Male
  • Middle Aged
  • Photic Stimulation
  • Predictive Value of Tests
  • Renal Dialysis
  • Retinal Vessels / physiopathology*
  • Risk Assessment
  • Signal Processing, Computer-Assisted*
  • Treatment Outcome
  • Vasodilation*
  • Venules / physiopathology*
  • Workflow

Associated data

  • ClinicalTrials.gov/NCT01152892