Amyotrophic Lateral Sclerosis-Frontotemporal Dementia (ALS-FTD) may present typical behavioral variant FTD symptoms. This study aims to determine whether profile and severity of cognitive-behavioral symptoms in ALS/ALS-FTD are predicted by regional cortical atrophy. The hypothesis is that executive dysfunction can be predicted by dorsolateral prefrontal cortical (dlPFC) atrophy, apathy by dorsomedial PFC (dmPFC) and anterior cingulate cortical (ACC) atrophy, disinhibition by orbitofrontal cortical (OFC) atrophy. 3.0 Tesla MRI scans were acquired from 22 people with ALS or ALS-FTD. Quantitative cortical thickness analysis was performed with FreeSurfer. A priori-defined regions of interest (ROI) were used to measure cortical thickness in each participant and calculate magnitude of atrophy in comparison to 115 healthy controls. Spearman correlations were used to evaluate associations between frontal ROI cortical thickness and cognitive-behavioral symptoms, measured by Neuropsychiatric Inventory Questionnaire (NPI-Q) and Clinical Dementia Rating (CDR) scale. ALS-FTD participants exhibited variable degrees of apathy (NPI-Q/apathy: 1.6 ± 1.2), disinhibition (NPI-Q/disinhibition: 1.2 ± 1.2), executive dysfunction (CDR/judgment-problem solving: 1.7 ± 0.8). Within the ALS-FTD group, executive dysfunction correlated with dlPFC atrophy (ρ:-0.65;p < 0.05); similar trends were seen for apathy with ACC (ρ:-0.53;p < 0.10) and dmPFC (ρ:-0.47;p < 0.10) atrophy, for disinhibition with OFC atrophy (ρ:-0.51;p < 0.10). Compared to people with ALS, those with ALS-FTD showed more diffuse atrophy involving precentral gyrus, prefrontal, temporal regions. Profile and severity of cognitive-behavioral symptoms in ALS-FTD are predicted by regional prefrontal atrophy. These findings are consistent with established brain-behavior models and support the role of quantitative MRI in diagnosis, management, counseling, monitoring and prognostication for a neurodegenerative disorder with diverse phenotypes.
Keywords: Amyotrophic lateral sclerosis (4); Cerebral cortex (2); Frontal lobe (5); Frontotemporal dementia (3); Magnetic resonance imaging (1).
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.