Synthesis of Ring-Locked Tetracyclic Dithienocyclopentapyrans and Dibenzocyclopentapyran via 1,5-Hydride Shift and Copper-Catalyzed C-O Bond Formation for Nonfullerene Acceptors

Org Lett. 2021 Mar 5;23(5):1692-1697. doi: 10.1021/acs.orglett.1c00110. Epub 2021 Feb 23.

Abstract

We discovered a unique synthetic route to construct 2H-pyran-containing tetracyclic dithienocyclopentapyran (DTCP) and dibenzocyclopentapyran (DBCP) architectures. The synthesis involves an acid-induced dehydration cyclization followed by a [1,5] hydride-shift isomerization to form a cyclopentanone moiety which was converted to the pyran-embedded tetracyclic products by a CuI-catalyzed intramolecular C-O bond formation in good yield. DTCP was used as a building block to prepare an acceptor-donor-acceptor (A-D-A) type n-type material DTCP-BC leading to a solar cell efficiency of 9.32%.

Publication types

  • Research Support, Non-U.S. Gov't