Enzymatic biodegradation of demineralized collagen fibrils could lead to the reduction of resin-dentin bond strength. Therefore, methods that provide protection to collagen fibrils appear to be a pragmatic solution to improve bond strength. Thus, the study's aim was to investigate the effect of ribose (RB) on demineralized resin-dentin specimens in a modified universal adhesive. Dentin specimens were obtained, standardized and then bonded in vitro with a commercial multi-mode adhesive modified with 0, 0.5%, 1%, and 2% RB, restored with resin composite, and tested for micro-tensile bond strength (µTBS) after storage for 24 h in artificial saliva. Scanning electron microscopy (SEM) was performed to analyze resin-dentin interface. Contact angles were analyzed using a contact angle analyzer. Depth of penetration of adhesives and nanoleakage were assessed using micro-Raman spectroscopy and silver tracing. Molecular docking studies were carried out using Schrodinger small-molecule drug discovery suite 2019-4. Matrix metalloproteinases-2 (MMP-2) and cathepsin-K activities in RB-treated specimens were quantified using enzyme-linked immunosorbent assay (ELISA). The significance level was set at α = 0.05 for all statistical analyses. Incorporation of RB at 1% or 2% is of significant potential (p < 0.05) as it can be associated with improved wettability on dentin surfaces (0.5% had the lowest contact angle) as well as appreciable hybrid layer quality, and higher resin penetration. Improvement of the adhesive bond strength was shown when adding RB at 1% concentration to universal adhesive (p < 0.05). Modified adhesive increased the resistance of collagen degradation by inhibiting MMP-2 and cathepsin-K. A higher RB concentration was associated with improved results (p < 0.01). D-ribose showed favorable negative binding to collagen. In conclusion, universal adhesive using 1% or 2% RB helped in maintaining dentin collagen scaffold and proved to be successful in improving wettability, protease inhibition, and stability of demineralized dentin substrates. A more favorable substrate is created which, in turn, leads to a more stable dentin-adhesive bond. This could lead to more advantageous outcomes in a clinical scenario where a stable bond may result in longevity of the dental restoration.
Keywords: crosslinking; dentin; hybrid layer; ribose; universal adhesives.