NiFe2O4 nanospheres functionalized with 2-(2, 4-Dihydroxyphenyl)-3, 5, 7-trihydroxychromen-4-one for selective solid-phase microextraction of aluminium

Talanta. 2021 May 1:226:122167. doi: 10.1016/j.talanta.2021.122167. Epub 2021 Jan 30.

Abstract

Herein, a rational combination of dispersive solid-phase sorbent and 2-(2, 4-Dihydroxyphenyl)-3, 5, 7-trihydroxychromen-4-one (morin) was proposed for sensitive and selective determination of Al3+ ion. Nickel ferrite nanospheres (NiFe2O4 NS) functionalized with morin was used to preconcentrate and estimate Al3+ via the formation of fluorescent complex at pH 7.0. The functionalization was assisted by anionic surfactant sodium dodecyl sulphate (SDS) and ultrasonication. The results revealed that the fluorescence intensity of Al-morin/SDS@ NiFe2O4 NS is higher than Al-morin. Functionalization of NiFe2O4 NS with morin was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometer (PXRD), and fluorescence spectroscopy. Under the optimum conditions, the fluorescence intensity increased with increasing of Al3+ concentrations in the range of 0.28-500.0 ng mL-1 with LOD (S/N = 3) of 0.09 ng mL-1. The method was applied for the determination of Al3+ in natural waters and human serum samples with recoveries % of 97-104% and RSDs % of 2-4%.

Keywords: Aluminum ion; Morin; Natural waters and blood serum samples; Nickel ferrite nanospheres; Sodium dodecyl sulphate.