Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers

Phys Rev Lett. 2021 Mar 12;126(10):106804. doi: 10.1103/PhysRevLett.126.106804.

Abstract

Charge separated interlayer excitons in transition metal dichalcogenide heterobilayers are being explored for moiré exciton lattices and exciton condensates. The presence of permanent dipole moments and the poorly screened Coulomb interaction make many-body interactions particularly strong for interlayer excitons. Here we reveal two distinct phase transitions for interlayer excitons in the MoSe_{2}/WSe_{2} heterobilayer using time and spatially resolved photoluminescence imaging: from trapped excitons in the moiré potential to the modestly mobile exciton gas as exciton density increases to n_{ex}∼10^{11} cm^{-2} and from the exciton gas to the highly mobile charge separated electron-hole plasma for n_{ex}>10^{12} cm^{-2}. The latter is the Mott transition and is confirmed in photoconductivity measurements. These findings set fundamental limits for achieving quantum states of interlayer excitons.