Nitrogen and phosphorous concentrations are widely considered to drive macrophyte assemblages in rivers. However, Dissolved Inorganic Carbon (DIC) - available for plants as CO2 and HCO3- - is also of major relevance. Based on literature, we present a conceptual model on the interaction between algae, macrophytes, DIC, pH, light, N, P and the surface water and sedimental compartment. Analysing two separate datasets (i) on river physico-chemistry and chlorophyll-a, and (ii) on river physico-chemistry and macrophytes we quantify three connections within this concept: (1) the correlation of chlorophyll-a versus pH, (2) the correlation of TP versus chlorophyll-a and (3) the occurrence of HCO3-users and CO2-only-users among macrophytes along the DIC gradient. Chlorophyll-a correlated positively with pH (R-squared = 77%, p < .001) due to increased carbon dioxide uptake of phytoplankton. Surface water TP did not linearly correlate with chlorophyll-a concentrations. Obligate and optionally submerged macrophyte species that utilise HCO3- were separated from CO2-only-users by HCO3- concentrations, with an area under the curve (AUC) of 68% and 70% (both p < .001) between groups. Obligate and optionally submerged macrophyte assemblages only composed of HCO3-users and those exclusively composed of CO2-only-users showed an even stronger separation based on the HCO3- concentration, with both an AUC of 82% and 78% (both p < .001). Our results underline that DIC can greatly affect riverine macrophytes. However, absolute concentrations of HCO3- are less relevant, while the connection to pH is more important, reflecting CO2 concentrations. River monitoring and management should consider the interaction between nutrients DIC, surface water and sedimental compartment as important factors affecting macrophyte occurrence, rather than solely focussing on surface water nutrients.
Keywords: Bicarbonate; Carbon dioxide; Inorganic carbon; Nitrogen; Phosphorus; Primary production.
Copyright © 2021 Elsevier B.V. All rights reserved.