Fear and safety learning are necessary adaptive behaviors that develop over the course of maturation. While there is a large body of literature regarding the neurobiology of fear and safety learning in adults, less is known regarding safety learning during development. Given developmental changes in the brain, there are corresponding changes in safety learning that are quantifiable; these may serve to predict risk and point to treatment targets for fear and anxiety-related disorders in children and adolescents. For healthy, typically developing youth, the main developmental variation observed is reduced discrimination between threat and safety cues in children compared to adolescents and adults, while lower expression of extinction learning is exhibited in adolescents compared to adults. Such distinctions may be related to faster maturation of the amygdala relative to the prefrontal cortex, as well as incompletely developed functional circuits between the two. Fear and anxiety-related disorders, childhood maltreatment, and behavioral problems are all associated with alterations in safety learning for youth, and this dysfunction may proceed into adulthood with corresponding abnormalities in brain structure and function-including amygdala hypertrophy and hyperreactivity. As impaired inhibition of fear to safety may reflect abnormalities in the developing brain and subsequent psychopathology, impaired safety learning may be considered as both a predictor of risk and a treatment target. Longitudinal neuroimaging studies over the course of development, and studies that query change with interventions are needed in order to improve outcomes for individuals and reduce long-term impact of developmental psychopathology.
Keywords: Amygdala; Development; Developmental psychobiology; Extinction learning; Fear conditioning; Hippocampus; Neuroimaging; Psychopathology; Psychophysiology; Safety learning.
Copyright © 2021 Elsevier B.V. All rights reserved.