Calorimetry is a classical biophysical method that by definition measures heat. In isothermal titration calorimetry (ITC), the heat is the result of titrating interacting components together and allows direct determination of the thermodynamics for this process. The measured heat reflects the enthalpy change (ΔH), and the prospect of determining this in biological systems where high-resolution structural information is available has led to the possibility of rational thermodynamics-guided design of ligands. Although there are limitations to this approach due to the participation of solvent in the thermodynamics, ITC has become an established technique in many labs providing a valuable tool with which to quantify protein-protein interactions. With careful use, ITC can also provide additional insights into the binding process or be used in increasingly complex systems and where interaction is coupled to other molecular events.
Keywords: Binding affinity; Binding kinetics; Dissociation constant; Enthalpy; Entropy; Free energy; Heat capacity; ITC; Isothermal titration calorimetry; Stoichiometry; Thermodynamics.