We show that C. elegans nematodes learn to associate food with a combination of proprioceptive cues and information on the structure of their surroundings (maze), perceived through mechanosensation. By using the custom-made Worm-Maze platform, we demonstrate that C. elegans young adults can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues. We provide evidence that the observed learning is a food-triggered multisensory behavior, which requires mechanosensory and proprioceptive input, and utilizes cues about the structural features of nematodes' environment and their body actions. The CREB-like transcription factor and dopamine signaling are also involved in maze performance. Lastly, we show that the observed aging-driven decline of C. elegans learning ability in the maze can be reversed by starvation.
Keywords: Behavioral Neuroscience; Biological Sciences; Neuroscience.
© 2021 The Authors.