Attention directed to proprioceptive stimulation alters its cortical processing in the primary sensorimotor cortex

Eur J Neurosci. 2021 May 6. doi: 10.1111/ejn.15251. Online ahead of print.

Abstract

Movement-evoked fields to passive movements and corticokinematic coherence between limb kinematics and magnetoencephalographic signals can both be used to quantify the degree of cortical processing of proprioceptive afference. We examined in 20 young healthy volunteers whether processing of proprioceptive afference in the primary sensorimotor cortex is modulated by attention directed to the proprioceptive stimulation of the right index finger using a pneumatic-movement actuator to evoke continuous 3-Hz movement for 12 min. The participant attended either to a visual (detected change of fixation cross colour) or movement (detected missing movements) events. The attentional task alternated every 3-min. Coherence was computed between index-finger acceleration and magnetoencephalographic signals, and sustained-movement-evoked fields were averaged with respect to the movement onsets every 333 ms. Attention to the proprioceptive stimulation supressed the sensorimotor beta power (by ~12%), enhanced movement-evoked field amplitude (by ~16%) and reduced corticokinematic coherence strength (by ~9%) with respect to the visual task. Coherence peaked at the primary sensorimotor cortex contralateral to the proprioceptive stimulation. Our results indicated that early processing of proprioceptive afference in the primary sensorimotor cortex is modulated by inter-modal directed attention in healthy individuals. Therefore, possible attentional effects on corticokinematic coherence and movement-evoked fields should be considered when using them to study cortical proprioception in conditions introducing attentional variation.

Keywords: magnetoencephalography; movement; muscle spindle; proprioception; selective attention; somatosensory.