Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterial species that comprises three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii. These predominantly environmental microorganisms have emerged as life-threatening chronic pulmonary pathogens in both immunocompetent and immunocompromised patients, and their acquisition of macrolide resistance due to the erm(41) gene and mutations in the 23S rrl gene has dramatically impacted patient outcome. However, standard microbiology laboratories typically have limited diagnostic tools to distinguish M. abscessus subspecies, and the testing for macrolide resistance is often not done. Here, we describe the development of a real-time multiplex assay using molecular beacons to establish a robust, rapid, and highly accurate method to both distinguish M. abscessus subspecies and to determine which strains are susceptible to macrolides. We report a bioinformatic approach to identify robust subspecies sequence targets, the design and optimization of six molecular beacons to identify all genotypes, and the development and application of a 2-tube 3-color multiplex assay that can provide clinically significant treatment information in less than 3 h.
Keywords: Mycobacterium abscessus; macrolide resistance; molecular beacon.