Crustacean cardioactive peptide (CCAP), a highly conserved amidated neuropeptide, stimulates feeding in Drosophila melanogaster and Periplaneta americana, and regulates pupa-adult transition in Tribolium castaneum and Manduca sexta. In the present paper, we intended to address whether CCAP plays the dual roles in the Colorado potato beetle Leptinotarsa decemlineata. We found that the levels of Ldccap were high in the dissected samples of brain-corpora cardiaca-corpora allata complex and ventral nerve cord, midgut and hindgut in the final (fourth)-instar larvae. A pulse of 20-hydroxyecdysone triggered the expression of Ldccap in the central nervous system but decreased the transcription in the midgut. In contrast, juvenile hormone intensified the expression of Ldccap in the midgut. RNA interference (RNAi)-aided knockdown of Ldccap at the penultimate instar stage inhibited foliage consumption, reduced the contents of trehalose and chitin, and lowered the mRNA levels of two chitin biosynthesis genes (LdUAP1 and LdChSAb). Moreover, around 70% of the Ldccap RNAi larvae remained as prepupae, completely wrapped in the old larval exuviae, and finally died. The remaining RNAi beetles continually developed to severely-deformed adults: most having wrinkled and smaller elytra and hindwings, and shortened legs. Therefore, CCAP plays three distinct roles, stimulating feeding in foraging larval stage, regulating ecdysis, and facilitating wing expansion and appendage elongation in a coleopteran. In addition, Ldccap can be used as a potential target gene for developing novel management strategies against this coleopteran pest.
Keywords: 20-hydroxyecdysone; Crustacean cardioactive peptide; Ecdysis; Feeding; Leptinotarsa decemlineata.
Copyright © 2021. Published by Elsevier Inc.