Exercise effect on insulin-dependent and insulin-independent glucose utilization in healthy individuals and individuals with type 1 diabetes: a modeling study

Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E122-E129. doi: 10.1152/ajpendo.00084.2021. Epub 2021 May 17.

Abstract

Exercise effects (EE) on whole body glucose rate of disappearance (Rd) occur through insulin-independent (IIRd) and insulin-dependent (IDRd) mechanisms. Quantifying these processes in vivo would allow a better understanding of the physiology of glucose regulation. This is of particular importance in individuals with type 1 diabetes (T1D) since such a knowledge may help to improve glucose management. However, such a model is still lacking. Here, we analyzed data from six T1D and six nondiabetic (ND) subjects undergoing a labeled glucose clamp study during, before, and after a 60-min exercise session at 65% V̇o2max on three randomized visits: euglycemia-low insulin, euglycemia-high insulin, and hyperglycemia-low insulin. We tested a set of models, all sharing a single-compartment description of glucose kinetics, but differing in how exercise is assumed to modulate glucose disposal. Model selection was based on parsimony criteria. The best model assumed an exercise-induced immediate effect on IIRd and a delayed effect on IDRd. It predicted that exercise increases IIRd, compared with rest, by 66%-82% and 67%-97% in T1D and ND, respectively, not significantly different between the two groups. Conversely, the exercise effect on IDRd ranged between 81% and 155% in T1D and it was significantly higher than ND, which ranged between 10% and 40%. The exaggerated effect observed in IDRd can explain the higher hypoglycemia risk related to individuals with T1D. This novel exercise model could help in informing safe and effective glucose management during and after exercise in individuals with T1D.NEW & NOTEWORTHY Here, we present a new mathematical model describing the effect of moderate physical activity on insulin-mediated and noninsulin-mediated glucose disposal in subjects with and without diabetes. We believe that this represents a step-forward in the knowledge of type 1 diabetes pathophysiology, and an useful tool to design safe and effective insulin-therapies.

Keywords: glucose fluxes; model; physical activity; tracer; type 1 diabetes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Blood Glucose / analysis
  • Blood Glucose / metabolism*
  • Diabetes Mellitus, Type 1 / blood
  • Diabetes Mellitus, Type 1 / drug therapy
  • Diabetes Mellitus, Type 1 / physiopathology*
  • Exercise / physiology*
  • Glucose Clamp Technique
  • Glycemic Control / methods
  • Homeostasis / physiology
  • Humans
  • Insulin / administration & dosage*
  • Insulin / blood
  • Models, Theoretical
  • Oxygen Consumption
  • Young Adult

Substances

  • Blood Glucose
  • Insulin

Associated data

  • figshare/10.6084/m9.figshare.14178941