Background: Selective proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during eukaryotic development, generating a cleaved histone H3 (H3cl) product within a small, but significant, portion of the genome. Although increasing evidence supports a regulatory role for H3NT proteolysis in gene activation, the nuclear H3NT proteases and the biological significance of H3NT proteolysis remain largely unknown.
Results: In this study, established cell models of skeletal myogenesis were leveraged to investigate H3NT proteolysis. These cells displayed a rapid and progressive accumulation of a single H3cl product within chromatin during myoblast differentiation. Using conventional approaches, we discovered that the canonical extracellular matrix (ECM) protease, matrix metalloproteinase 2 (MMP-2), is the principal H3NT protease of myoblast differentiation that cleaves H3 between K18-Q19. Gelatin zymography demonstrated progressive increases in nuclear MMP-2 activity, concomitant with H3cl accumulation, during myoblast differentiation. RNAi-mediated depletion of MMP-2 impaired H3NT proteolysis and resulted in defective myogenic gene activation and myoblast differentiation. Supplementation of MMP-2 ECM activity in MMP-2-depleted cells was insufficient to rescue defective H3NT proteolysis and myogenic gene activation.
Conclusions: This study revealed that MMP-2 is a novel H3NT protease and the principal H3NT protease of myoblast differentiation. The results indicate that myogenic signaling induces MMP-2-dependent H3NT proteolysis at early stages of myoblast differentiation. Importantly, the results support the necessity of nuclear MMP-2 H3NT protease activity, independent of MMP-2 activity in the ECM, for myogenic gene activation and proficient myoblast differentiation.