Aims: Sodium butyrate (SB) is a major product of gut microbiota with signaling activity in the human body. It has become a dietary supplement in the treatment of intestinal disorders. However, the toxic effect of overdosed SB and treatment strategy remain unknown. The two issues are addressed in current study.
Materials and methods: SB (0.3-2.5 g/kg) was administrated through a single peritoneal injection in mice. The core body temperature and mitochondrial function in the brown adipose tissue and brain were monitored. Pharmacodynamics, targeted metabolomics, electron microscope, oxygen consumption rate and gene knockdown were employed to dissect the mechanism for the toxic effect.
Key findings: The temperature was reduced by SB (1.2-2.5 g/kg) in a dose-dependent manner in mice for 2-4 h. In the brain, the effect was associated with SB elevation and neurotransmitter reduction. Metabolites changes were seen in the glycolysis, TCA cycle and pentose phosphate pathways. Adenine nucleotide translocase (ANT) was activated by butyrate for proton transportation leading to a transient potential collapse through proton leak. The SB activity was attenuated by ANT inhibition from gene knockdown or pharmacological blocker. ROS was elevated by SB for the increased ANT activity in proton leak in Neuro-2a.
Significance: Excessive SB generated an immediate and reversible toxic effect for inhibition of body temperature through transient mitochondrial dysfunction in the brain. The mechanism was quick activation of ANT proteins for potential collapse in mitochondria. ROS may be a factor in the ANT activation by SB.
Keywords: ANT; Energy metabolism; MPTP; Mitochondria; Sodium butyrate.
Copyright © 2021. Published by Elsevier Inc.