Background: The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali.
Methods: Children between 6 and 59 months of age with uncomplicated Plasmodium falciparum infection and 2000-200,000 asexual parasites/μL of blood were enrolled, randomly assigned to either AL or ASAQ, and followed up for 42 days. Uncorrected and PCR-corrected efficacy results at days 28 and 42. were calculated. Known markers of resistance in the Pfk13, Pfmdr1, and Pfcrt genes were assessed using Sanger sequencing.
Results: A total of 449 patients were enrolled: 225 in the AL group and 224 in the ASAQ group. Uncorrected efficacy at day 28 was 83.4% (95% CI 78.5-88.4%) in the AL arm and 93.1% (95% CI 89.7-96.5%) in the ASAQ arm. The per protocol PCR-corrected efficacy at day 28 was 91.0% (86.0-95.9%) in the AL arm and 97.1% (93.6-100%) in the ASAQ arm. ASAQ was significantly (p < 0.05) better than AL for each of the aforementioned efficacy outcomes. No mutations associated with artemisinin resistance were identified in the Pfk13 gene. Overall, for Pfmdr1, the N86 allele and the NFD haplotype were the most common. The NFD haplotype was significantly more prevalent in the post-treatment than in the pre-treatment isolates in the AL arm (p < 0.01) but not in the ASAQ arm. For Pfcrt, the CVIET haplotype was the most common.
Conclusions: The findings indicate that both AL and ASAQ remain effective for the treatment of uncomplicated malaria in Sélingué, Mali.
Keywords: Antimalarial resistance; Artemether–lumefantrine; Artesunate–amodiaquine; Efficacy; Malaria; Mali; Pfcrt; Pfk13; Pfmdr1.