Human-derived Treg and MSC combination therapy may augment immunosuppressive potency in vitro, but did not improve blood brain barrier integrity in an experimental rat traumatic brain injury model

PLoS One. 2021 May 26;16(5):e0251601. doi: 10.1371/journal.pone.0251601. eCollection 2021.

Abstract

Traumatic brain injury (TBI) causes both physical disruption of the blood brain barrier (BBB) and altered immune responses that can lead to significant secondary brain injury and chronic inflammation within the central nervous system (CNS). Cell therapies, including mesenchymal stromal cells (MSC), have been shown to restore BBB integrity and augment endogenous splenic regulatory T cells (Treg), a subset of CD4+ T cells that function to regulate immune responses and prevent autoimmunity. We have recently shown that infusion of human cord blood-derived Treg decreased neuroinflammation after TBI in vivo and in vitro. However, while both cells have demonstrated anti-inflammatory and regenerative potential, they likely utilize differing, although potentially overlapping, mechanisms. Furthermore, studies investigating these two cell types together, as a combination therapy, are lacking. In this study, we compared the ability of Treg+MSC combination therapy, as well as MSC and Treg monotherapies, to improve BBB permeability in vivo and suppress inflammation in vitro. While Treg+MSC combination did not significantly augment potency in vivo, our in vitro data demonstrates that combination therapy may augment therapeutic potency and immunosuppressive potential compared to Treg or MSC monotherapy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Blood-Brain Barrier / immunology*
  • Brain Injuries, Traumatic* / immunology
  • Brain Injuries, Traumatic* / therapy
  • Disease Models, Animal
  • Humans
  • Immune Tolerance*
  • Male
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells / immunology*
  • Rats
  • Rats, Sprague-Dawley
  • T-Lymphocytes, Regulatory* / immunology
  • T-Lymphocytes, Regulatory* / transplantation