The management of spine tumors is multimodal and personalized to each individual patient. Patients often require radiation therapy after surgical fixation. Although titanium implants are used most commonly, they produce significant artifact, leading to decreased confidence in target-volume coverage and normal tissue sparing. Carbon-based materials have been found to have minimal effects on dose perturbation in postoperative radiation therapy and have shown biostability and biocompatibility that are comparable to titanium implants. Using the PubMed and Web of Sciences databases, we conducted a systematic review of carbon-based screw and rod fixation systems in the treatment of spinal tumors. We reviewed clinical studies regarding safety of spine fixation with carbon fiber-reinforced (CFR) implants and biomechanical studies, as well as radiation and dosimetric studies. The radiolucency of CFR-polyether ether ketone implants has the potential to benefit patients with spine tumor. Clinical studies have shown no increase in complications with implementation of CFR-polyether ether ketone implants, and these devices seem to have sufficient stiffness and pullout strength. However, further trials are necessary to determine if there is a clinically significant impact on local tumor control.
Keywords: Carbon fiber screws; Carbon fiber spine oncology; Carbon fiber spine tumor.
Copyright © 2021 Elsevier Inc. All rights reserved.