The selection of indicators from initial blood routine test results to improve the accuracy of early prediction of COVID-19 severity

PLoS One. 2021 Jun 15;16(6):e0253329. doi: 10.1371/journal.pone.0253329. eCollection 2021.

Abstract

The global pandemic of COVID-19 poses a huge threat to the health and lives of people all over the world, and brings unprecedented pressure to the medical system. We need to establish a practical method to improve the efficiency of treatment and optimize the allocation of medical resources. Due to the influx of a large number of patients into the hospital and the running of medical resources, blood routine test became the only possible check while COVID-19 patients first go to a fever clinic in a community hospital. This study aims to establish an efficient method to identify key indicators from initial blood routine test results for COVID-19 severity prediction. We determined that age is a key indicator for severity predicting of COVID-19, with an accuracy of 0.77 and an AUC of 0.92. In order to improve the accuracy of prediction, we proposed a Multi Criteria Decision Making (MCDM) algorithm, which combines the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Naïve Bayes (NB) classifier, to further select effective indicators from patients' initial blood test results. The MCDM algorithm selected 3 dominant feature subsets: {Age, WBC, LYMC, NEUT} with a selection rate of 44%, {Age, NEUT, LYMC} with a selection rate of 38%, and {Age, WBC, LYMC} with a selection rate of 9%. Using these feature subsets, the optimized prediction model could achieve an accuracy of 0.82 and an AUC of 0.93. These results indicated that Age, WBC, LYMC, NEUT were the key factors for COVID-19 severity prediction. Using age and the indicators selected by the MCDM algorithm from initial blood routine test results can effectively predict the severity of COVID-19. Our research could not only help medical workers identify patients with severe COVID-19 at an early stage, but also help doctors understand the pathogenesis of COVID-19 through key indicators.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age of Onset
  • Aged
  • Biomarkers / blood
  • COVID-19 / blood
  • COVID-19 / diagnosis*
  • Diagnostic Tests, Routine / methods*
  • Female
  • Hematologic Tests / methods*
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • Prospective Studies
  • Risk Assessment / methods
  • SARS-CoV-2 / isolation & purification
  • Severity of Illness Index*
  • Triage / methods*

Substances

  • Biomarkers

Grants and funding

This work was funded by Natural Science Foundation of China 81802468, Sichuan Science and Technology Program 2019YFS0207 and China Postdoctoral Science Foundation 2020M670062ZX to Dr. Lingyun Zhou; Grant 81700044 from Natural Science Foundation of China to Dr. Shujin Guo; Sichuan Science and Technology Program 2020YFS0113 to Dr. Bo Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.