Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes

Diabetologia. 2021 Sep;64(9):2077-2091. doi: 10.1007/s00125-021-05481-9. Epub 2021 Jun 16.

Abstract

Aims/hypothesis: Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified.

Methods: Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation.

Results: Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37-56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes.

Conclusions/interpretation: Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent.

Keywords: Branched-chain amino acid; Oestrogen-related receptor α; Oral glucose tolerance test; Peroxisome proliferator-activated receptor γ coactivator 1-α; Skeletal muscle; Type 2 diabetes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids, Branched-Chain / metabolism
  • Animals
  • Chromatography, Liquid
  • Diabetes Mellitus, Type 2* / genetics
  • Diabetes Mellitus, Type 2* / metabolism
  • ERRalpha Estrogen-Related Receptor
  • Glucose / metabolism
  • Humans
  • Mice
  • Muscle Fibers, Skeletal / metabolism
  • Muscle, Skeletal / metabolism
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism
  • Receptors, Estrogen
  • Tandem Mass Spectrometry

Substances

  • Amino Acids, Branched-Chain
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Receptors, Estrogen
  • Glucose