In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Keywords: Cold shock; Genetic variation; GxE interactions; Heat shock; Latitude; Macrocyclic lactone.
Copyright © 2021 Elsevier Ltd. All rights reserved.