The objective of this study is to assess the effects of the mixing ratio on the methane production and digestate dewaterability of co-digestion of pig manure (P) and sludge (S). Batch experiments were carried out at five different P/S mixing ratios at mesophilic and thermophilic temperatures. Compared to sludge anaerobic digestion, co-digestion of pig manure with sludge increased methane yield 83.0%-136.5% at mesophilic temperature and 31.3%-68.0% at thermophilic temperature. The normalized capillary suction time (NCST) and total solids (TS) of sediment (centrifugal dewatering) increased when pig manure proportion of substrate increased. The NCST at thermophilic temperatures (4.87-17.58 s g-1-TSS) was higher than that at mesophilic temperatures (1.89-10.95 s g-1-TSS). However, the TS of sediment was close at thermophilic and mesophilic temperatures. The results indicated that anaerobic co-digestion of pig manure and sludge at a proper mixing ratio (P/S = 2:1) provides a good choice for energy recovery and land utilization.
Keywords: Ammonia; Bacterial communities; Normalized capillary suction time; TS of sediment; Ultimate methane yield.
Copyright © 2021 Elsevier Ltd. All rights reserved.