NEFA, BHBa, UREA and Liver Enzyme Variation in the Bloodstream of Weaned Foals up to 18 Months of Age

Animals (Basel). 2021 Jun 11;11(6):1746. doi: 10.3390/ani11061746.

Abstract

The pattern of selected metabolites for interpreting homeostasis during the growth of foals can be used as an indicator of energy balance state and liver health. Against this background, the literature on circulating parameters of foals across growth stages is scanty. We hypothesized that circulating metabolites indicating energy distribution such as non-esterified fatty acids (NEFA), β-hydroxy-butyric acid (BHBa), UREA and liver enzyme-like γ-glutamyl-transferase (γ-GT) [interpreted in the light of circulating total bilirubin (TBIL), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] may be used to monitor the energy balance of growing foals. A total of 12 Anglo-Arab (AA) foals from the same stable were enrolled in this trial. All foals were serially weighed on a digital scale and sampled for total blood at weaning, at 12 and 18 months of age. Feeding and keeping conditions were similar for all the foals involved. Animals appeared healthy and no signs of poor growth performance were pointed out. The peak of circulating NEFA mobilized from body depots was reached at one year of age but markedly dropped at 18 months, when BHBa increased (p < 0.001) alongside with liver enzyme. BHBa and γ-GT levels turned out to positively correlate (p = 0.051). However, at 6, 12 and 18 months, γ-GT dropped in the physiological reference range for the horse, thus showing no prognostic value. ALT and UREA significantly increased (p = 0.008 and p = 0.006, respectively) when NEFA also increased (p = 0.001). Liver enzyme increase could be associated with fat mobilization and ketone bodies production meanwhile amino acid transamination for energy purposes led to the increase of UREA in the bloodstream. However, no prognostic value to liver enzyme could be attributed in this trial.

Keywords: body depots; energy balance; ketone bodies; liver; mass development.