We investigate the ultrafast photoconductivity and charge-carrier transport in thermally annealed Fe-implanted InGaAs/InP films using time-resolved terahertz spectroscopy. The samples were fabricated from crystalline InGaAs films amorphized with Fe ions implantation. The rapid thermal annealing of the InGaAs layer induces solid recrystallization through the formation of polycrystalline grains whose sizes are shown to increase with increasing annealing temperature within the 300-700 °C range. Based on the influence of the laser fluence, the temporal profile of the time-resolved photoconductivity was reproduced using a system of rate equations that describe the photocarrier dynamics in terms of a capture/recombination mechanism. For annealing temperatures below 500 °C, the capture time is found to be less than 1 ps while the recombination time from the charged states did not exceed 5 ps. However, for higher annealing temperatures, the capture and the recombination times show a continuous increase, reaching 7.1 ps and 1 ns respectively, for the film annealed at 700 °C. Frequency-dependent photoconductivity curves are analyzed via a modified Drude-Smith model that considers a diffusive restoring current and the confining particles' sizes. Our results demonstrate that the localization parameter of the photocarrier transport model is correlated to the polycrystalline grain size. We also show that a relatively high effective mobility of about 2570 cm2 V-1 s-1is preserved in all these Fe-implanted InGaAs films.
Keywords: InGaAs films; ion-implantation; numbers; photocarrier dynamics; photoconductivity; time-resolved terahertz spectroscopy; valid PACS appear here.
© 2021 IOP Publishing Ltd.