The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review

J Clin Transl Res. 2021 May 27;7(3):333-376. eCollection 2021 Jun 26.

Abstract

Background and aim: Recently, optimal immune function has become a primary focus of worldwide attention not only in the prevention of chronic disease but also as one strategy to reduce the severity of acute illness. Inflammation, a process largely controlled by the immune system, has long been studied and recognized for its role in chronic disease. Optimizing immune function or managing inflammation using individual nutrients and phytonutrients is not well understood by the average person. Thus, this narrative literature review summarizes many of the more recent findings about how certain nutrients and phytonutrients affect immune function and inflammation, and how they may best be utilized considering the growing worldwide interest in this topic.

Methods: A comprehensive literature search of PubMed was performed to find clinical trials in humans that assessed the effect of nutrients and phytonutrients on immune function and inflammation, in individuals with acute and chronic health conditions, published in English between 2000 and 2020. Two independent reviewers evaluated the articles for their inclusion.

Results: Eighty-seven articles were summarized in this narrative review. In total 24 nutrients and phytonutrients were included in the study, that is, acetyl-L-carnitine, Aloe vera polysaccharides, beta-glucans, bilberry, black seed oil, coenzyme Q10, curcumin (turmeric), frankincense, garlic, ginger, hydrolyzed rice bran, isoflavones, lipoic acid, mistletoe, N-acetyl cysteine, omega-3 fatty acids, resveratrol, selenium, shiitake mushroom and its derivatives, Vitamin B12, Vitamin C, Vitamin D3 (cholecalciferol), Vitamin E (d-alpha- and gamma-tocopherol), and zinc. Some of the noteworthy immune function and anti-inflammatory responses to these interventions included modulation of nuclear factor-Kappa B, tumor necrosis factor-a, interferon-g, interleukin-6, and CD4+ T cells, among others. These findings are not completely consistent or ubiquitous across all patient populations or health status.

Conclusions: Based on this review, many nutrients and phytonutrients are capable of significantly modulating immune function and reducing inflammation, according to multiple biomarkers in clinical trials in different populations of adults with varying health statuses. Thus, dietary supplementation may serve as an adjunct to conventional pharmaceutical or medical therapies, but evaluation of risks and benefits for each person and health status is necessary. Additional larger studies are also needed to investigate the safety and efficacy of nutritional compounds in various health conditions, with emphases on potential drug-supplement interactions and clinical endpoints.

Relevance for patients: As demonstrated in the reviewed clinical trials, patients of various health challenges with a wide range of severity may benefit from select nutrients and phytonutrients to improve their immune function and reduce inflammation.

Keywords: immune function; immunomodulation; inflammation; nutrients; phytonutrients.

Publication types

  • Review