Thyroid hormones during the perinatal period are necessary to respiratory network development of newborn rats

Exp Neurol. 2021 Nov:345:113813. doi: 10.1016/j.expneurol.2021.113813. Epub 2021 Jul 18.

Abstract

Thyroid hormones (THs) are essential for foetal brain development. Because the gestating mother is the main source of THs to the foetus, maternal hypothyroidism and/or premature birth compromise neurological outcomes in the offspring. Respiratory instability and recurrent apneas due to immaturity of the respiratory control network are major causes of morbidity in infants. Inadequate TH supply may be sufficient to delay perinatal maturation of the respiratory control system; however, this hypothesis remains untested. To address this issue, maternal hypothyroidism was induced by adding methimazole (MMI; 0.02% w/v) to the drinking water of pregnant dams from conception to postpartum day 4 (P4). The effect of TH supplementation on respiratory function was tested by injecting levothyroxine (L-T4) in newborns at P1. Respiratory function was assessed by plethysmography (in vivo) and recording of phrenic output from medullary preparations (in vitro). By comparison with controls, TH deficiency increased the frequency of apneas and decreased basal ventilation in vivo and prevented the age-dependent increase in phrenic burst frequency normally observed in vitro. The effects of TH deficiency on GABAergic modulation of respiratory activity were measured by bath application of muscimol (GABAA agonist) or bicuculline (GABAA antagonist). The phrenic burst frequency responses to GABAergic agents were consistently greater in preparations from TH deficient pups. L-T4 supplementation reversed part of the respiratory anomalies related to MMI treatment in vitro. We conclude that TH deficiency during the perinatal period is sufficient to delay maturation of the respiratory control network development. Excessive GABAergic inhibition may contribute to this effect.

Keywords: Control of breathing; GABAergic system; Neural development; Thyroid hormones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Antithyroid Agents / pharmacology*
  • Female
  • GABA-A Receptor Antagonists / pharmacology
  • Male
  • Methimazole / pharmacology
  • Nerve Net / drug effects
  • Nerve Net / metabolism*
  • Phrenic Nerve / drug effects
  • Phrenic Nerve / metabolism*
  • Plethysmography / methods
  • Pregnancy
  • Rats
  • Rats, Sprague-Dawley
  • Respiration / drug effects
  • Respiratory Mechanics / drug effects
  • Respiratory Mechanics / physiology*
  • Thyroid Hormones / deficiency*

Substances

  • Antithyroid Agents
  • GABA-A Receptor Antagonists
  • Thyroid Hormones
  • Methimazole