Background: The efficacy of allergen-specific immunotherapy (AIT) is mainly depended on the tolerogenic immune responses elicited. Properly conjugated nano-vaccine has the advantages of both specific targeting and continuous and on-demand release of allergen.
Objectives: The aim of this study is to investigate the effects of a dendritic cells (DCs)-targeting nano-vaccine for AIT.
Methods: The nano-vaccine was produced by coupling polylactic-co-glycolic acid (PLGA)-encapsulated ovalbumin (OVA) with mannan. Allergen capture, human monocytes-derived DCs (hMoDCs) activation, and T cells responses were assessed by flow cytometry, confocal microscopy, quantitative real-time PCR, ELISA, and Cytometric Bead Array. Balb/c mice were immunized with the nano-vaccines, and the immune responses were analyzed.
Results: OVA-PLGA nanoparticle (NP) displayed favorable safety profile. OVA-mannan-PLGA NP was captured more efficiently by hMoDCs than OVA-PLGA NP, which was mediated mainly through DC-specific intercellular adhesion molecule 3-grabbing nonintegrin. A tolerogenic phenotype of hMoDCs was induced by OVA-mannan-PLGA NP, but not OVA-PLGA NP, and increased number of regulatory T (Treg) cells was generated subsequently in in vitro coculture. Immunization of Balb/c mice with OVA-mannan-PLGA NP resulted in lower serum level of OVA-specific immunoglobulins and less production of pro-inflammatory cytokines in splenocytes culture than the mice immunized with OVA-PLAG NP, PLGA NP, or OVA, while the number of splenic Treg cells was higher in OVA-mannan-PLGA group than in other groups. Moreover, preimmunization with OVA-mannan-PLGA NP significantly inhibited the Th2 immune response induced by OVA sensitization.
Conclusions: The biocompatible PLGA-encapsulated OVA coupling with mannan has augmented ability for tolerance induction and could be developed as a novel vaccine for AIT.
Keywords: Allergen; Allergen-specific immunotherapy; Dendritic cells; Immune tolerance; Mannan; Polylactic-co-glycolic acid; Treg cells.
© 2021 S. Karger AG, Basel.