Glioblastoma Contains Topologically Distinct Proliferative and Metabolically Defined Subpopulations of Nestin- and Glut1-Expressing Cells

J Neuropathol Exp Neurol. 2021 Aug 11;80(7):674-684. doi: 10.1093/jnen/nlab044.

Abstract

The difficulty in treatment of glioblastoma is a consequence of its natural infiltrative growth and the existence of a population of therapy-resistant glioma cells that contribute to growth and recurrence. To identify cells more likely to have these properties, we examined the expression in tumor specimens of several protein markers important for glioma progression including the intermediate filament protein, Nestin (NES), a glucose transporter (Glut1/SLC2A1), the glial lineage marker, glial fibrillary acidic protein, and the proliferative indicator, Ki-67. We also examined the expression of von Willebrand factor, a marker for endothelial cells as well as the macrophage/myeloid markers CD163 and CD15. Using a multicolor immunofluorescence and hematoxylin and eosin staining approach with archival formalin-fixed, paraffin embedded tissue from primary, recurrent, and autopsy IDH1 wildtype specimens combined with high-resolution tissue image analysis, we have identified highly proliferative NES(+)/Glut1(-) cells that are preferentially perivascular. In contrast, Glut1(+)/NES(-) cells are distant from blood vessels, show low proliferation, and are preferentially located at the borders of pseudopalisading necrosis. We hypothesize that Glut1(+)/NES(-) cells would be naturally resistant to conventional chemotherapy and radiation due to their low proliferative capacity and may act as a reservoir for tumor recurrence.

Keywords: Glioblastoma; Glucose transporter protein 1 (Glut1); Intermediate filament protein (Nestin); Multicolor immunofluorescence; Proliferative marker (Ki-67); Tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, CD / genetics
  • Antigens, CD / metabolism
  • Antigens, Differentiation, Myelomonocytic / genetics
  • Antigens, Differentiation, Myelomonocytic / metabolism
  • Brain Neoplasms / metabolism*
  • Brain Neoplasms / pathology
  • Glioblastoma / metabolism*
  • Glioblastoma / pathology
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism*
  • Humans
  • Ki-67 Antigen / genetics
  • Ki-67 Antigen / metabolism
  • Lewis X Antigen / genetics
  • Lewis X Antigen / metabolism
  • Nestin / genetics
  • Nestin / metabolism*
  • Neuroglia / metabolism
  • Neuroglia / pathology
  • Receptors, Cell Surface / genetics
  • Receptors, Cell Surface / metabolism
  • Tumor Cells, Cultured
  • Tumor Microenvironment*
  • Tumor-Associated Macrophages / metabolism

Substances

  • Antigens, CD
  • Antigens, Differentiation, Myelomonocytic
  • CD163 antigen
  • Glucose Transporter Type 1
  • Ki-67 Antigen
  • Lewis X Antigen
  • Nestin
  • Receptors, Cell Surface
  • SLC2A1 protein, human