Pearlescent Mica-Doped Alginate as a Stable, Vibrant Medium for Two-Dimensional and Three-Dimensional Art

ACS Omega. 2021 Jul 14;6(29):18694-18701. doi: 10.1021/acsomega.1c01453. eCollection 2021 Jul 27.

Abstract

Emergent technologies are driving forces in the development of innovative art media that progress the field of modern art. Recently, artists have capitalized on the versatility of a new technology to create, restore, and modify art: additive manufacturing or three-dimensional (3D) printing. Additively manufactured art relies heavily on plastic-based materials, which typically require high heat to induce melting for workability. The necessity for heat limits plastic media to dedicated 3D printers. In contrast, biologically derived polymers such as polysaccharides used to create "bioinks" often do not require heating the material for workability, broadening the types of techniques available for printing. Here, we detail the formulation of a bioink consisting of mica pigments suspended in alginate as a new, vibrant art medium for 2D and 3D compositions. The properties that make alginate an ideal colorant binder are detailed: low cost with wide availability, nontoxicity and biocompatibility, minimal color, and an array of attractive physicochemical properties that offer workability and processing into 2D and 3D structures. Further, the chemical composition, morphology, and dispersibility of an array of mica pigment additives are characterized in detail as they pertain to the quality of an art medium. Alginate-based media with eight mica colors were formulated, where mica addition resulted in vibrantly colored inks with moderate hiding power and coverage of substrates necessary for 2D printing with thin horizontal and vertical lines. The utility of the media is demonstrated via the generation of 2D and 3D vibrant structures.