The experimental determination of thermophysical properties of nanofluid (NF) is time-consuming and costly, leading to the use of soft computing methods such as response surface methodology (RSM) and artificial neural network (ANN) to estimate these properties. The present study involves modelling and optimization of thermal conductivity and viscosity of NF, which comprises multi-walled carbon nanotubes (MWCNTs) and thermal oil. The modelling is performed to predict the thermal conductivity and viscosity of NF by using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Both models were tested and validated, which showed promising results. In addition, a detailed optimization study was conducted to investigate the optimum thermal conductivity and viscosity by varying temperature and NF weight per cent. Four case studies were explored using different objective functions based on NF application in various industries. The first case study aimed to maximize thermal conductivity (0.15985 W/m oC) while minimizing viscosity (0.03501 Pa s) obtained at 57.86 °C and 0.85 NF wt%. The goal of the second case study was to minimize thermal conductivity (0.13949 W/m °C) and viscosity (0.02526 Pa s) obtained at 55.88 °C and 0.15 NF wt%. The third case study targeted maximizing thermal conductivity (0.15797 W/m °C) and viscosity (0.07611 Pa s), and the optimum temperature and NF wt% were 30.64 °C and 0.0.85,' respectively. The last case study explored the minimum thermal conductivity (0.13735) and maximum viscosity (0.05263 Pa s) obtained at 30.64 °C and 0.15 NF wt%.
Keywords: Artificial neural network; Nanofluids; Response surface methodology; Thermal conductivity; Viscosity.
Copyright © 2021 Elsevier Ltd. All rights reserved.