The clinical success of EGFR inhibitors in EGFR-mutant lung cancer is limited by the eventual development of acquired resistance. We hypothesize that enhancing apoptosis through combination therapies can eradicate cancer cells and reduce the emergence of drug-tolerant persisters. Through high-throughput screening of a custom library of ∼1,000 compounds, we discover Aurora B kinase inhibitors as potent enhancers of osimertinib-induced apoptosis. Mechanistically, Aurora B inhibition stabilizes BIM through reduced Ser87 phosphorylation, and transactivates PUMA through FOXO1/3. Importantly, osimertinib resistance caused by epithelial-mesenchymal transition (EMT) activates the ATR-CHK1-Aurora B signaling cascade and thereby engenders hypersensitivity to respective kinase inhibitors by activating BIM-mediated mitotic catastrophe. Combined inhibition of EGFR and Aurora B not only efficiently eliminates cancer cells but also overcomes resistance beyond EMT.
Keywords: Aurora B kinase; BCL-2 family; EMT; apoptosis; drug resistance; drug tolerance; epidermal growth factor receptor; lineage plasticity; lung cancer; mitotic catastrophe.
Copyright © 2021 Elsevier Inc. All rights reserved.