Advances in microelectronics and nanofabrication have led to the development of various implantable biomaterials. However, biofilm-associated infection on medical devices still remains a major hurdle that substantially undermines the clinical applicability and advancement of biomaterial systems. Given their attractive piezoelectric behavior, barium titanate (BTO)-based materials have also been used in biological applications. Despite its versatility, the feasibility of BTO-embedded biomaterials as anti-infectious implantable medical devices in the human body has not been explored yet. Here, the first demonstration of clinically viable BTO-nanocomposites is presented. It demonstrates potent antibiofilm properties against Streptococcus mutans without bactericidal effect while retaining their piezoelectric and mechanical behaviors. This antiadhesive effect led to ∼10-fold reduction in colony-forming units in vitro. To elucidate the underlying mechanism for this effect, data depicting unfavorable interaction energy profiles between BTO-nanocomposites and S. mutans using the classical and extended Derjaguin, Landau, Verwey, and Overbeek theories is presented. Direct cell-to-surface binding force data using atomic force microscopy also corroborate reduced adhesion between BTO-nanocomposites and S. mutans. Interestingly, the poling process on BTO-nanocomposites resulted in asymmetrical surface charge density on each side, which may help tackle two major issues in prosthetics-bacterial contamination and tissue integration. Finally, BTO-nanocomposites exhibit superior biocompatibility toward human gingival fibroblasts and keratinocytes. Overall, BTO-embedded composites exhibit broad-scale potential to be used in biological settings as energy-harvestable antibiofilm surfaces.
Keywords: Streptococcus mutans; barium titanate; energy-harvestable antibiofilm surface; infection-resistant biomaterial; piezoelectric nanoparticle.