Background: Women with gestational glucose intolerance, defined as an abnormal initial gestational diabetes mellitus screening test, are at risk of adverse pregnancy outcomes even if they do not have gestational diabetes mellitus. Previously, we defined the physiological subtypes of gestational diabetes mellitus based on the primary underlying physiology leading to hyperglycemia and found that women with different subtypes had differential risks of adverse outcomes. Physiological subclassification has not yet been applied to women with gestational glucose intolerance.
Objective: We defined the physiological subtypes of gestational glucose intolerance based on the presence of insulin resistance, insulin deficiency, or mixed pathophysiology and aimed to determine whether these subtypes are at differential risks of adverse outcomes. We hypothesized that women with the insulin-resistant subtype of gestational glucose intolerance would have the greatest risk of adverse pregnancy outcomes.
Study design: In a hospital-based cohort study, we studied women with gestational glucose intolerance (glucose loading test 1-hour glucose, ≥140 mg/dL; n=236) and normal glucose tolerance (glucose loading test 1-hour glucose, <140 mg/dL; n=1472). We applied homeostasis model assessment to fasting glucose and insulin levels at 16 to 20 weeks' gestation to assess insulin resistance and deficiency and used these measures to classify women with gestational glucose intolerance into subtypes. We compared odds of adverse outcomes (large for gestational age birthweight, neonatal intensive care unit admission, pregnancy-related hypertension, and cesarean delivery) in each subtype to odds in women with normal glucose tolerance using logistic regression with adjustment for age, race and ethnicity, marital status, and body mass index.
Results: Of women with gestational glucose intolerance (12% with gestational diabetes mellitus), 115 (49%) had the insulin-resistant subtype, 70 (27%) had the insulin-deficient subtype, 40 (17%) had the mixed pathophysiology subtype, and 11 (5%) were uncategorized. We found increased odds of large for gestational age birthweight (primary outcome) in women with the insulin-resistant subtype compared with women with normal glucose tolerance (odds ratio, 2.35; 95% confidence interval, 1.43-3.88; P=.001; adjusted odds ratio, 1.74; 95% confidence interval, 1.02-3.48; P=.04). The odds of large for gestational age birthweight in women with the insulin-deficient subtype were increased only after adjustment for covariates (odds ratio, 1.69; 95% confidence interval, 0.84-3.38; P=.14; adjusted odds ratio, 2.05; 95% confidence interval, 1.01-4.19; P=.048). Among secondary outcomes, there was a trend toward increased odds of neonatal intensive care unit admission in the insulin-resistant subtype in an unadjusted model (odds ratio, 2.09; 95% confidence interval, 0.99-4.40; P=.05); this finding was driven by an increased risk of neonatal intensive care unit admission in women with the insulin-resistant subtype and a body mass index of <25 kg/m2. Infants of women with other subtypes did not have increased odds of neonatal intensive care unit admission. The odds of pregnancy-related hypertension in women with the insulin-resistant subtype were increased (odds ratio, 2.09; 95% confidence interval, 1.31-3.33; P=.002; adjusted odds ratio, 1.77; 95% confidence interval, 1.07-2.92; P=.03) compared with women with normal glucose tolerance; other subtypes did not have increased odds of pregnancy-related hypertension. There was no difference in cesarean delivery rates in nulliparous women across subtypes.
Conclusion: Insulin-resistant gestational glucose intolerance is a high-risk subtype for adverse pregnancy outcomes. Delineating physiological subtypes may provide opportunities for a more personalized approach to gestational glucose intolerance.
Keywords: adverse pregnancy outcomes; diabetes mellitus; gestational diabetes mellitus; gestational glucose intolerance; glucose intolerance; insulin deficiency; insulin resistance; large for gestational age birthweight; physiological subtypes; pregnancy; pregnancy-related hypertension.
Copyright © 2021 Elsevier Inc. All rights reserved.