Fava bean is an extremely important legume and serves immense potential to function as an ingredient as pulse proteins in human diet. Bearing the proficiency of yielding magnanimous amount of functional and nutritional ingredients, this bean deserves to replace any other leguminous crop too. The instability of fava bean in its yield makes breeding for crop improvement difficult, and its high susceptibility to a number of abiotic and biotic stresses additionally results in unstable yields. The self-incompatibility leads to the formation of a limited genetic pool and shows a slow progress in breeding. The plant is highly recalcitrant, making it an onerous task to micropropagate or regenerate fava beans under in vitro conditions. Another fly in the ointment is the release of phenolic compounds by the plant. There are several endeavours that have been made to establish in vitro regeneration, protoplast culture, and genetic transformation and to genetically improve this plant. Nonetheless there are a number of promising cutting-edge technologies that are yet to be harnessed in order to ensure its comprehensive and sustainable genetic improvement. The in vitro-based technologies of this legume and its untraveled path in the plant tissue culture-mediated approaches can assist further genetic manipulation of this plant species in a smoother manner and at an exponential rate. Creation of a single review comprising all the updates and genetic advancements in fava bean is an absolute necessity of the hour. Thus, the importance of this review remains at the peak as it covers a vast range of information, starting from the basic description to the utmost modern stages of advancement in the selected crop. Overall interpretation of the review is aimed at encouraging readers to focus on almost all possible dimensions of international research, already executed, and is being executed in fava bean, thereby helping to understand the demand and advantages of the crop, even at the molecular level.Key points• Fava bean, commonly known as "poor man's meat", is a protein-rich legume with multiple nutritional and pharmacological benefits.• Its highly recalcitrant response makes in vitro interventions quite challenging for its genetic improvement.• This review delves into biotechnological interventions for its advancements to date and highlights major hurdles and potential research solutions to ensure comprehensive genetic improvement.
Keywords: Calli; Fava bean; Genetic transformation; L-DOPA; Micropropagation; Parkinson’s disease; Protoplast culture; Recalcitrant.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.