Histone deacetylase 6 (HDAC6) is a promising therapeutic target for the treatment of cancers, neurodegenerative diseases and autoimmune disorders. Herein a novel series of pyrrolo[2,3-d]pyrimidine-based HDAC inhibitors were designed, synthesized and biologically evaluated, among which compounds 7a, 12a1, and 16a1 exhibited potent inhibitory activities and selectivities against HDAC6. Notably, compared with the well-known HDAC6 inhibitor Tubastatin A, our pyrrolo[2,3-d]pyrimidine-based HDAC6 inhibitors showed superior in vitro antiproliferative activity against human multiple myeloma cell lines RPMI 8226, U266 and MM.1S, while maintaining the low cytotoxicity against human breast cancer cell line MDA-MB-231 and two normal cell lines. The HDAC6 selective inhibition of one representative compound 12a1 in RPMI 8226 cells was confirmed by western blot analysis. Although pyrrolo[2,3-d]pyrimidine is a privileged structure in many kinase inhibitors, compound 12a1 showed negligible inhibition against several kinases including JAK family members and Akt1, indicating its acceptable off-target profile. Besides, compound 12a1 exhibited desirable metabolic stability in mouse liver microsome. The in vivo anti-multiple myeloma potency of 12a1, alone and in combination with bortezomib, was demonstrated in a RPMI 8226 xenograft model.
Keywords: Anticancer; Histone deacetylase 6; Multiple myeloma; Pyrrolo[2,3-d]pyrimidine; Selective inhibitor.
Copyright © 2021 Elsevier Inc. All rights reserved.