Aim: To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach.
Methods and results: A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and β peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 .
Conclusions: The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria.
Significance and impact: The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.
Keywords: Bacillus velezensis; amyloliquecidin; antimicrobial discovery; antimicrobial peptide; lantibiotic; two-component.
© 2021 Society for Applied Microbiology.