Cow milk allergy is one of the most prevalent food allergies worldwide, particularly in infants and children. To the best of our knowledge, minimal research exists concerning the antigenicity of cow milk (CM). This study was performed to evaluate the allergenicity of enzymatically hydrolyzed cow milk (HM) in a BALB/c mouse model. The mice were randomly divided into 5 groups (n = 12/group), which were sensitized with phosphate-buffered saline, CM, and HM (Alcalase-, or Protamex-, or Flavorzyme-treated cow milk; Novo Nordisk; AT, PT, FT, respectively), respectively, using cholera toxin as adjuvant on d 0, 7, 14, 21. On d 28, the test mice were orally challenged with phosphate-buffered saline, CM, and HM (AT, PT, or FT) alone. Anaphylactic symptoms were monitored in the mice. Antibody, cytokine, histamine, and mouse mast cell protease-1 (mMCP-1) levels were measured using enzyme-linked immunosorbent assays. In addition, the numbers of T helper (Th)1 and Th2 cells, as well as the proportions of CD4+CD25+Foxp3+ Treg cells, in mouse spleens were detected using flow cytometry. Statistical significance was determined by one-way ANOVA. The results revealed significant differences between CM- and HM-challenged mice. Among these, the clinical scores of HM-challenged mice (AT, 1.50; PT, 2.00; FT, 1.92) were lower than those of CM-challenged mice (positive control, 2.83), but body weight and temperature of HM-challenged mice were higher than those of CM-challenged mice. In addition, significant reductions of allergen-specific IgE, IgG, histamine, and mMCP-1 were showed in HM-challenged mice, especially for histamine, ranging from 171.42 ng/mL to 214.94 ng/mL. Remarkable reductions of IL-4, IL-5, and IL-13 levels, as well as elevations of interferon-γ and IL-10 levels in the spleens of HM-challenged mice were also detected. Moreover, the number of Th2 cells decreased in the HM-challenged mice, to 2.36% (AT), 1.79% (PT), and 4.03% (FT), respectively, whereas the numbers of Th1 cells (AT, 6.30%; PT, 6.70%; FT, 6.56%) and the proportions of CD4+CD25+Foxp3+Tregs (AT, 8.86%; PT, 9.21%; FT, 9.16%) increased significantly. Our findings indicate that exposure to HM was sufficient to induce a shift toward a Th1 response, thereby reducing potential allergenicity. Importantly, these results will lay a theoretical foundation for the development of hypoallergenic CM products.
Keywords: allergenicity; cow milk; enzymatic hydrolysis; mouse model.
Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.