Purpose: Patients with pneumonia often present to the emergency department (ED) and require prompt diagnosis and treatment. Clinical decision support systems for the diagnosis and management of pneumonia are commonly utilized in EDs to improve patient care. The purpose of this study is to investigate whether a deep learning model for detecting radiographic pneumonia and pleural effusions can improve functionality of a clinical decision support system (CDSS) for pneumonia management (ePNa) operating in 20 EDs.
Materials and methods: In this retrospective cohort study, a dataset of 7434 prior chest radiographic studies from 6551 ED patients was used to develop and validate a deep learning model to identify radiographic pneumonia, pleural effusions, and evidence of multilobar pneumonia. Model performance was evaluated against 3 radiologists' adjudicated interpretation and compared with performance of the natural language processing of radiology reports used by ePNa.
Results: The deep learning model achieved an area under the receiver operating characteristic curve of 0.833 (95% confidence interval [CI]: 0.795, 0.868) for detecting radiographic pneumonia, 0.939 (95% CI: 0.911, 0.962) for detecting pleural effusions and 0.847 (95% CI: 0.800, 0.890) for identifying multilobar pneumonia. On all 3 tasks, the model achieved higher agreement with the adjudicated radiologist interpretation compared with ePNa.
Conclusions: A deep learning model demonstrated higher agreement with radiologists than the ePNa CDSS in detecting radiographic pneumonia and related findings. Incorporating deep learning models into pneumonia CDSS could enhance diagnostic performance and improve pneumonia management.
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.