Background: Milk proteins contain many encrypted bioactive peptides. Whether these bioactive peptides are released in the infant intestine and exert immunomodulatory activity remains unknown.
Objective: This study examined in vitro immunomodulatory activities of peptides from in vitro- and in vivo-digested human milk.
Methods: Peptides were extracted from in vitro-digested human milk and pooled intestinal samples from 8 infants fed human milk. Peptides extracted from in vitro-digested samples were fractionated. The in vitro effects of these peptides and fractions on the secretion of TNF-α and IL-8 in LPS-treated human immune THP-1 macrophages were evaluated. The significance of differences between in vitro peptide fraction treatment and control on cytokine production was analyzed by t test. LC-MS/MS-based peptidomics was conducted to identify the peptides. The peptides were screened for potential bioactivity using a sequence homology search using the Milk Bioactive Peptide Database (MBPDB).
Results: Six fractions of the peptide mixture extracted from the in vitro-digested human milk significantly inhibited TNF-α production by LPS-challenged THP-1 macrophages. Fractions F4, F8, F11, F14, and F17 attenuated IL-8 secretion, and F6/7 and F18 increased IL-8 secretion. Peptides extracted from the pooled in vivo intestinal samples attenuated both TNF-α and IL-8 secretion. There were 266 and 418 peptides identified in the in vitro and in vivo samples, respectively. Among the peptides, 34 and 50 in the in vitro and in vivo samples, respectively, had >80% sequence similarity to bioactive peptides in the MBPDB.
Conclusions: Peptides released by in vitro and in vivo infant digestion of human milk were immunomodulatory in human immune cells; fractions F4, F8, and F11 were anti-inflammatory; and F6/7 and F18 were proinflammatory. Thirteen peptides were present in all fractions with anti-inflammatory activity, and 38 peptides were present in all fractions with proinflammatory activity. These peptides potentially contributed to the observed immunomodulatory activity of the peptide mixtures.
Keywords: THP-1 cells; digestion; human milk; immunomodulatory activity; peptide.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.