Seven novel glucose-6-phosphate dehydrogenase (G6PD) deficiency variants identified in the Qatari population

Hum Genomics. 2021 Oct 7;15(1):61. doi: 10.1186/s40246-021-00358-9.

Abstract

Background: Glucose-6-phosphate dehydrogenase deficiency (G6PDD) is the most common red cell enzymopathy in the world. In Qatar, the incidence of G6PDD is estimated at around 5%; however, no study has investigated the genetic basis of G6PDD in the Qatari population yet.

Methods: In this study, we analyzed whole-genome sequencing data generated by the Qatar Genome Programme for 6045 Qatar Biobank participants, to identify G6PDD variants in the Qatari population. In addition, we assessed the impact of the novel variants identified on protein function both in silico and by measuring G6PD enzymatic activity in the subjects carrying them.

Results: We identified 375 variants in/near G6PD gene, of which 20 were high-impact and 16 were moderate-impact variants. Of these, 14 were known G6PDD-causing variants. The most frequent G6PD-causing variants found in the Qatari population were p.Ser188Phe (G6PD Mediterranean), p.Asn126Asp (G6PD A +), p.Val68Met (G6PD Asahi), p.Ala335Thr (G6PD Chatham), and p.Ile48Thr (G6PD Aures) with allele frequencies of 0.0563, 0.0194, 0.00785, 0.0050, and 0.00380, respectively. Furthermore, we have identified seven novel G6PD variants, all of which were confirmed as G6PD-causing variants and classified as class III variants based on the World Health Organization's classification scheme.

Conclusions: This is the first study investigating the molecular basis of G6PDD in Qatar, and it provides novel insights about G6PDD pathogenesis and highlights the importance of studying such understudied population.

Keywords: G6PD deficiency; Novel variants; Qatar Biobank (QBB); Qatar Genome Programme (QGP); Whole-genome sequencing (WGS).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Female
  • Genetic Variation / genetics*
  • Genotype
  • Glucosephosphate Dehydrogenase / genetics*
  • Glucosephosphate Dehydrogenase Deficiency / epidemiology
  • Glucosephosphate Dehydrogenase Deficiency / genetics*
  • Humans
  • Male
  • Middle Aged
  • Mutation / genetics
  • Polymorphism, Single Nucleotide / genetics
  • Qatar / epidemiology
  • Young Adult

Substances

  • G6PD protein, human
  • Glucosephosphate Dehydrogenase