Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI

J Cancer Res Clin Oncol. 2022 Jan;148(1):97-106. doi: 10.1007/s00432-021-03822-0. Epub 2021 Oct 8.

Abstract

Purpose: This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular subtypes of breast cancer.

Methods: A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator (LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), specificity and sensitivity as comparison metrics.

Results: The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation (HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort.

Conclusions: Peritumoral regions can provide complementary information to intratumoral regions for the prediction of molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, but lower AUCs for the prediction of HER2-enriched and TN.

Keywords: Breast; MRI; Mammography; Molecular subtype; Radiomics.

MeSH terms

  • Breast / diagnostic imaging*
  • Breast Neoplasms / classification
  • Breast Neoplasms / diagnostic imaging*
  • Breast Neoplasms / pathology*
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Mammography / methods*
  • Middle Aged
  • Radiometry
  • Retrospective Studies