Room-Temperature Mechanical Resonator with a Single Added or Subtracted Phonon

Phys Rev Lett. 2021 Sep 24;127(13):133602. doi: 10.1103/PhysRevLett.127.133602.

Abstract

A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.