Polyploidy is a widespread phenomenon in flowering plant species. Polyploid plants frequently exhibit considerable transcriptomic alterations after whole-genome duplication (WGD). It is known that the transcriptomic response to tetraploidization is ecotype-dependent in Arabidopsis; however, the biological significance and the underlying mechanisms are unknown. In this study, we found that 4x Col-0 presents a delayed flowering time whereas 4x Ler does not. The expression of FLOWERING LOCUS C (FLC), the major repressor of flowering, was significantly increased in 4x Col-0 but only a subtle change was present in 4x Ler. Moreover, the level of a repressive epigenetic mark, trimethylation of histone H3 at lysine 27 (H3K27me3), was significantly decreased in 4x Col-0 but not in 4x Ler, potentially leading to the differences in FLC transcription levels and flowering times. Hundreds of other genes in addition to FLC showed H3K27me3 alterations in 4x Col-0 and 4x Ler. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and transcription factors required for H3K27me3 deposition presented transcriptional changes between the two ecotypes, potentially accounting for the different H3K27me3 alterations. We also found that the natural 4x Arabidopsis ecotype Wa-1 presented an early flowering time, which was associated with low expression of FLC. Taken together, our results demonstrate a role of H3K27me3 alterations in response to genome duplication in Arabidopsis autopolyploids, and that variation in flowering time potentially functions in autopolyploid speciation.
Keywords: Arabidopsis; FLC; H3K27me3; epigenetics; flowering time; polyploidization; trimethylation; vernalization; whole-genome duplication.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.