Characterizing structural and tissue abnormalities of the kidney is fundamental to understanding kidney disease. Functional multi-parametric renal magnetic resonance imaging (MRI) is a noninvasive imaging strategy whereby several sequences are employed within a single session to quantify renal perfusion, tissue oxygenation, fibrosis, inflammation, and oedema without using ionizing radiation. In this review, we discuss evidence surrounding its use in several clinical settings including acute kidney injury, chronic kidney disease, hypertension, polycystic kidney disease and around renal transplantation. Kidney size on MRI is already a validated measure for making therapeutic decisions in the setting of polycystic kidney disease. Functional MRI sequences, T1 mapping and apparent diffusion coefficient, can non-invasively quantify interstitial fibrosis and so may have a near-future role in the nephrology clinic to stratify the risk of progressive chronic kidney disease or transplant dysfunction. Beyond this, multi-parametric MRI may be used diagnostically, for example differentiating inflammatory versus ischaemic causes of renal dysfunction, but this remains to be proven. Changes in MRI properties of kidney parenchyma may be useful surrogate markers to use as end points in clinical trials to assess if drugs prevent renal fibrosis or alter kidney perfusion. Large, multi-centre studies of functional renal MRI are ongoing which aim to provide definitive answers as to its role in the management of patients with renal dysfunction.
Keywords: acute kidney injury; chronic kidney disease; fibrosis; magnetic resonance imaging; nephrology; perfusion.
© 2021 Asian Pacific Society of Nephrology.