Background: Interleukin 4 (IL-4i1)-induced gene 1 encodes L-phenylalanine oxidase that catabolizes phenylalanine into phenylpyruvate. IL-4i1 is mainly expressed by antigen-presenting cells (APCs), inhibits T-cell proliferation, regulates B-cell activation, modulates T cell responses, and drives macrophage polarization, but its role in bacterial infections is understudied.
Methods: We evaluated IL-4i1 deletion in macrophages and mice on infection with virulent H37Rv and W-Beijing lineage hypervirulent HN878 Mycobacterium tuberculosis (Mtb) strains. The bacterial growth and proinflammatory responses were measured in vitro and in vivo. Histopathological analysis, lung immune cell recruitment, and macrophage activation were assessed at the early and chronic stages of Mtb infection.
Results: IL-4i1-deficient (IL-4i1-/-) mice displayed increased protection against acute H37Rv, HN878 and chronic HN878 Mt infections, with reduced lung bacterial burdens and altered APC responses compared with wild-type mice. Moreover, "M1-like" interstitial macrophage numbers, and nitrite and Interferon-γ production were significantly increased in IL-4i1-/- mice compared with wild-type mice during acute Mtb HN878 infection.
Conclusions: Together, these data suggest that IL-4i1 regulates APC-mediated inflammatory responses during acute and chronic Mtb infection. Hence, IL-4i1 targeting has potential as an immunomodulatory target for host-directed therapy.
Keywords: Mycobacterium tuberculosis; IL-4i1; host-directed therapy; immunity.
© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society of America.